Как можно сделать воздух проводником

Содержание

Когда воздух кажется тяжелым

Как можно сделать воздух проводником

В марте текущего года многочисленные технические СМИ опубликовали сенсационную новость: ученые из Чжэцзянского университета в Ханчжоу получили наилегчайший материал в мире — аэрогель на основе графена, кубический сантиметр которого весит всего 0,16 мг. Но это же в семь с половиной раз легче воздуха! Здесь явно какой-то подвох — может ли твердое вещество однородной структуры быть столь легким?

Аэрогель — это странный, очень странный материал. У него нет практически ни одного свойства, в которое можно сразу, без доказательств поверить.

Лишь подержав брусок аэрогеля в руках или хотя бы посмотрев видеозаписи, где это делает кто-либо другой, начинаешь понимать: похоже, это правда.

Являясь твердым материалом, он на 99,8% состоит из воздуха и при этом способен выдерживать вес, превышающий его собственный в 4000 раз (!), что говорит о нечеловеческой прочности.

Аэрогели огнеупорны, воздухопроницаемы, способны впитывать воду или масло, могут — в зависимости от материала изготовления — служить электрическим проводником или не менее эффективным изоляционным материалом. Тем не менее, несмотря на то что изобрели аэрогель почти сто лет назад, сфера его применения на данный момент ограничена. В первую очередь это связано с очень высокой ценой.

Себестоимость исходных материалов для аэрогеля составляет порядка $1000 за кубический сантиметр, и это не считая серьезных временных затрат. А время, как известно, это самый дорогостоящий ресурс. Так или иначе, на сегодняшний день аэрогель значительно дороже золота. Второй недостаток — чрезмерно малая пластичность, то есть аэрогели очень хрупкие. Они выдержат давление, но не удар.

Аэрогель на кухне?

В принципе, изготовить аэрогель в домашних условиях можно. Но это будет очень дорого, сложно, и с высокой долей вероятности результат окажется несколько отличным от ожиданий.

«Исходником» служит гель — материал (а точнее, дисперсная система), состоящий из двух компонентов — макромолекулярной сетки и низкомолекулярного растворителя, заполняющего поры сетки.

«Наполнителем» может служить вода, спирт, углеводороды, а структурой — диоксид кремния, оксид алюминия, желатин и т. д. В аэрогеле же жидкий наполнитель заменяется воздухом, и получается пористая структура.

Первый аэрогель был получен из так называемого алкогеля — силикагеля (структуры, образованной растворами кремниевых кислот), поры которого были заполнены спиртом. Казалось бы, что может быть проще, достаточно извлечь жидкую составляющую и заменить газообразной. Но если провести такую операцию грубо, то структура «схлопнется» и деформируется. Поэтому получение аэрогеля предполагает определенные трудности.

Простейший способ, который использовал в 1920-х годах изобретатель аэрогеля Сэмюэл Кистлер, выглядит следующим образом. Сперва гель нагревается до критической точки — такой температуры и давления, при которой свойства жидкости и газа не различаются между собой. Затем давление понижается при сохранении критической температуры — при этом вещество сохраняет газообразное состояние.

Затем, второй ступенью, снижается и температура — спирта в структуре при этом слишком мало, чтобы он мог конденсироваться обратно в жидкость, и поры геля остаются наполненными газом (воздухом).

В итоге мы получаем недеформированную структуру — аэрогель. Звучит несложно, но построить на кухне устройство для приведения геля к критической температуре, а тем более к давлению — задача не из тривиальных.

Но, спешим заметить, это вполне возможно, и прецеденты есть.

Исходный продукт

Аэрогель можно сделать из значительного количества материалов — различных полимеров, металлов и т. д. Наиболее распространены в промышленности (если это можно назвать «распространением») три типа: на базе силикагелей, углеводородов и оксидов металлов. Чаще всего в экспериментах используют первый тип.

Силика-аэрогели выглядят воздушно-голубыми.

Их окраска объясняется тем, что материал содержит большое количество частиц силики (оксида кремния) и заполненных воздухом или газом пор нанометровых размеров, которые рассеивают коротковолновое излучение (синий и фиолетовый) лучше, чем длинноволновое. То есть по той же самой причине, почему небо в ясный день имеет голубой оттенок: за счет рассеяния света на молекулах газов в атмосфере.

Аэрогели на основе углеродных гелей черные, напоминают и на вид, и на ощупь уголь, только очень легкий. Имея очень большую площадь поверхности и будучи хорошими проводниками, они могут использоваться для изготовления суперконденсаторов или топливных элементов.

Наконец, аэрогели на базе оксидов металлов используются в качестве катализаторов при химических реакциях, а также при производстве взрывчатых веществ, карбоновых нанотрубок и т. д. В отличие от силикогелевых и углеродных собратьев, металлические аэрогели могут быть разных цветов — в зависимости от используемого металла.

Что с этим делать?

Применяются аэрогели в достаточно широком спектре областей, но, так сказать, понемногу. Одна из основных отраслей, использующих подобные материалы, — космическая.

Например, в 1999 году агентство NASA запустило космический аппарат «Стардаст», созданный специально для исследования короткопериодической кометы 81P/Вильда. Пролетев около 4,8 млрд. километров, «Стардаст» успешно достиг кометы, сделал ряд фотоснимков и, что очень важно, собрал частицы «звездной пыли» из комы (облака пыли и газа), окружающей комету.

Для сбора образцов как раз и использовался аэрогель, известный своими абсорбирующими качествами.

260 аэрогелевых параллелепипедов уловили значительное количество частиц и послужили «контейнерами», позволившими доставить «звездную пыль» на Землю в полной сохранности.

В 2006 году «Стардаст» успешно вернулся, и ученые впервые за много лет получили образцы космического вещества — причем не какого-то, а из «окружения» кометы; анализ полученных образцов стал еще одной вехой в исследовании космоса.

В принципе, в качестве ловушки можно было использовать и другие вещества, но ничто не могло сравниться с аэрогелем по сочетанию «малая масса — высокая адсорбирующая способность».

Конечно, не космосом единым жив человек. Для нас значительно более важно не исследовательское, а прикладное применение того или иного изобретения. Интересно, что на ранних стадиях аэрогели пытались применять практически во всех сферах человеческого существования — от косметики до взрывчатки, от сигарет до холодильников.

В 1940-х годах Сэмюэл Кистлер подписал контракт с компанией Monsanto, которая производила и продавала этот материал под торговой маркой Santocel. воздуха в «сантоселе» составляло порядка 94%. В первую очередь «сантосель» рекламировался как изоляционный материал для пожароопасных производств, поскольку был негорючим и очень легким.

Его абсорбирующие свойства позволяли использовать его в качестве загустителя в напалмовых бомбах, также он использовался при производстве лакокрасочной продукции и т. д. В течение четверти века Monsanto была единственным производителем аэрогелей в мире, но в 1970-х годах и она свернула производство странного вещества. Слишком мал был спрос, и слишком дорогим и опасным оставалось производство.

Но в 1980-х годах ученые разработали ряд более простых способов получения аэрогеля. Спирт был заменен диоксидом углерода, а применение в технологии изготовления силикагелей алкоголятов кремния снизило токсичность и повысило скорость производства. Аэрогель снова приобрел коммерческую ценность и получил второй шанс.

Ныне аэрогели применяются в различных отраслях промышленности, например при производстве силикона и строительных материалов. Аэрогель можно встретить в красках, косметике, водонепроницаемых и огнеупорных тканях, в ядерной отрасли. Но основное употребление он нашел в сфере изоляционных материалов.

В частности, это идеальный огнеупорный материал, позволяющий увеличить пожарную безопасность зданий, а также теплоизоляционная структура для труднодоступных участков (скажем, оконные щели в точках открывания).

Да, стоимость его высока, но при грамотном использовании в определенных местах она выходит даже меньше, нежели при применении традиционных методов.

Если в ближайшее время будут разработаны новые, более дешевые методики производства аэрогеля и его стоимость упадет, аэрогель вполне может стать товаром широкого потребления. Как алюминий, нейлон или дерево.

Вперед в будущее

Исследование аэрогелей продолжается. Перед учеными стоит целый ряд задач: сделать материал прочнее, дешевле, а также обезопасить его производство. В 2002 году профессор Николас Левентис из Университета науки и технологий штата Миссури объявил о том, что разработал метод производства нехрупкого аэрогеля (раньше хрупкость была одной из основных проблем материала).

Вещества, созданные по методике Левентиса, получили наименование X-аэрогели — они более прочные и эластичные, но, с другой стороны, их производство весьма опасно и занимает больше времени. Ухудшились и изоляционные свойства. X-аэрогели могут найти применение в сфере производства брони, автомобильных шин, самолетов. Углеродные аэрогели можно применять для создания суперконденсаторов и топливных элементов.

Современная наука чаще всего базируется на исследованиях, которые проводятся в хорошо оборудованных лабораториях целыми институтами. Аэрогелем, как ни странно, может заниматься и ученый-одиночка — необходимое оборудование сравнительно доступно. Это открывает достаточно широкие возможности для исследований. В интернете можно найти целые сайты, посвященные методике и рецептам по изготовлению аэрогелей.

Но мы, кажется, так и не ответили на два важных вопроса, заданных в начале материала: действительно ли аэрогель может быть легче воздуха и почему китайский графеновый аэрогель стал сенсацией. Плотность различных аэрогелей обычно варьируется в пределах от 0,001 до 0,5 г/см3 (чаще всего порядка 0,02 г/см3), а плотность воздуха — 0,001225 г/см3.

То есть аэрогель действительно может быть немного легче воздуха — такой эффект достигается удалением воздуха из пор и замещением его газом, более легким, чем воздух. Китайские же ученые поставили рекорд, добившись плотности 0,00016 г/см3. Предыдущий рекорд сверхмалой плотности принадлежал материалу под названием аэрографит, созданному год назад немецкими учеными, — его плотность составляла 0,0002 г/см3.

Основное достижение китайцев не только в разработке нового метода получения аэрогеля и установлении рекорда, но и в отличных свойствах графенового аэрогеля: он удивительно эластичен (восстанавливается после 90-процентного сжатия) и способен абсорбировать количество жидкости (масла), в 900 раз превышающее его собственную массу. Вполне вероятно, новое вещество станет великолепным улавливателем океанического мусора и, что немаловажно, загрязняющих воду веществ, например нефти.

Читайте также  После включения нагревательного прибора температура воздуха

В общем, широкое практическое применение аэрогелей в повседневной жизни, как говорится, на носу. Правда, пока совершенно непонятны размеры этого носа.

Сделай сам

На сайте aerogel.org приведена пошаговая инструкция по изготовлению установки для сверхкритической сушки — того самого устройства, которое позволит получать аэрогели в домашних условиях, а также целый ряд инструкций по созданию аэрогелей различных типов.

Источник: http://elementy.ru/lib/432011

Воздух и его свойства

Уже многие миллиарды лет наша Земля, окружённая слоем воздуха, совершает свой бесконечный бег вокруг Солнца.

Этот слой воздуха называется атмосферой. Его толщина достигает 300 км. Атмосфера как прозрачное, невидимое покрывало, окутывает нашу Землю. А что такое воздух, каковы его свойства и роль в жизни на Земле?

Где находится воздух и зачем он нам нужен

Воздух заполняет все свободные места, и даже самые маленькие щели.

Прозрачный стакан только кажется пустым. Попробуйте, медленно наклоняя его, погружать в воду. По мере заполнения стакана водой, из него крупными пузырями будет выходить воздух.

Какова же роль воздуха в жизни на нашей планете:

  • Без воздуха жизнь на Земле была бы невозможна. Без пищи человек может продержаться несколько недель, без воды – несколько дней, а без воздуха всего несколько минут. Попробуйте перестать дышать на какое-то время. Уже через несколько секунд вы почувствуете, как нуждаетесь в глубоком вдохе. Точно также воздух необходим и животным.
  • А ещё воздух помогает нам общаться. Издаваемые звуки приводят в колебание воздух. Рождающиеся звуковые волны заставляют колебаться барабанную перепонку в ушах. Колебания передаются в головной мозг, который воспринимает их как звук. На Луне нет атмосферы, поэтому там царит абсолютная тишина. А общаться можно только с помощью специальных устройств или жестами.
  • В огромном воздушном океане рождаются ветры и облака, грозы и полярные сияния. Он оберегает нас от метеоритов, опасного ультрафиолетового и теплового излучения, исходящего от Солнца. Благодаря этой воздушной «шубе», не страшен Земле и космический холод.
  • Благодаря воздуху небо бороздят самолёты, вертолёты, висят громадные дирижабли. В голубом небе совершают свой полёт птичьи стаи, неподвижно парят громадные птицы — охотники. Подъёмная сила, удерживающая их в полёте, возникает за счёт обтекания воздухом изогнутых поверхностей их крыльев.
  • Рыбы, благодаря жабрам, умеют дышать воздухом, содержащимся в воде.

Воздушный океан, окружающий нашу планету, удерживается силами земного тяготения. Если бы Земля потеряла свою воздушную оболочку, то превратилась бы в безжизненную, лишенную растительности, пустыню.

Из чего состоит воздух

Только два века назад учёные узнали, что воздух — это смесь из нескольких газов: азота, кислорода и углекислого газа. Атмосфера есть и у других планет: Венеры, Марса и у огромных планет-гигантов. Марс и Венера во многом похожи на Землю, однако жизни на них нет, поскольку другой состав атмосферы.

Наиболее важен для дыхания кислород. Без него мы не можем получить из пищи необходимую для жизни энергию. При физической работе и занятиях спортом мы дышим глубже и чаще, чтобы восполнить затрачиваемую для этой деятельности энергию.

Есть простой опыт, который позволяет получить кислород даже дома. В пробирку насыпаем обычной марганцовки (примерно 1/4). Закрепляем в вертикальном положении над огнём газовой конфорки или спиртовки. Выдерживаем 1-2 минуты и подносим к её открытому концу тлеющую лучину. Лучина ярко вспыхивает. Выделяющийся при нагревании газ поддерживает горение он и называется кислородом.

А в следующем опыте мы получим углекислый газ, который не поддерживает горение. Две свечки разной высоты устанавливаем в коробочку с раствором лимонной кислоты (уксуса). Зажигаем их.

Затем в раствор аккуратно добавляем соду. Происходит достаточно бурная реакция. Свечи поочередно гаснут. Вначале маленькая, затем более высокая.

Более низкая свечка погасла первой, значит, углекислый газ тяжелее кислорода и он скапливается внизу.

С поверхности всех водоёмов, почвы и растительности происходит постоянное испарение воды. Поэтому в воздухе всегда содержаться водяные пары. От их количества зависит влажность воздушных масс, формирование облаков и дождевых туч.

Каковы свойства воздуха?

Ответить на этот вопрос нам помогут следующие рассуждения:

  • Имеет ли воздух цвет? Нет, воздух прозрачен. Если бы он имел цвет, то окрашивал бы окружающие растения и предметы.
  • Почему же небо голубое? Дело в том, что солнечный свет состоит из 7 цветов как в радуге. Проходя через атмосферу, голубой цвет усиливается. Его — то мы и видим.
  • Если взять 2 резиновых шарика и надуть их (до одинаковых размеров), они примут круглую форму. Значит, давление вдуваемого воздуха передалось по всем направлениям одинаково.
  • А теперь поместите один из надутых шариков в холодильник, а другой в ведро с тёплой водой. Через 10-15 минут охлаждённый шарик уменьшится в размерах, а нагретый — увеличится. Следовательно, воздух при нагревании расширяется, а при охлаждении сжимается.
  • Если у вас дома найдется шприц без иголки, зажмите его носик пальцем, и попробуйте поршнем сжимать воздух в шприце. Объем воздуха заметно уменьшится. Отпустите поршень — объем воздуха станет прежним. Следовательно, воздух упруг.
  • В морозную погоду люди надевают шубы и тёплые пальто, а птицы взъерошивают свои перья, чтобы задержать воздух между ворсинками и перышками. Потому что воздух — плохой проводник тепла. Поэтому растения, под снежным одеялом, не замерзают даже в сильные холода.

Все эти замечательные свойства воздуха человек научился использовать в повседневной жизни. Вспомним упругие шины автомобилей и велосипеда, насосы и многие другие изобретения человечества. Воздух заставляет мчаться по волнам лёгкие яхты и огромные парусные корабли, вращает крылья ветряных мельниц, а своей упругостью заставляет подпрыгивать мяч.

Где самый чистый и полезный воздух

Для нашего дыхания нужен чистый воздух с достаточным содержанием кислорода. Но в городах, где все дороги забиты автомобилями, воздух загрязнен их выхлопными газами. Добавляют загрязнения и выбросы из заводских труб. Иногда они образуют вредный смог, который как тучи нависает над городом, мешая дышать.

Зато в лесах и парках дышится очень легко, потому что наши зелёные помощники поглощают вредный углекислый газ, а выделяют кислород. Вырабатывают кислород и морские водоросли, поэтому воздух на морском побережье так целебен.

Но сейчас люди стараются уменьшить вредные выбросы в атмосферу. Создаются автомобильные двигатели, работающие на электрической и даже солнечной энергии. Вместо дымящих труб тепловых строят атомные и солнечные электростанции.

Драчёва Светлана Семёновна

Если это сообщение тебе пригодилось, буда рада видеть тебя в группе ВКонтакте. А ещё — спасибо, если ты нажмёшь на одну из кнопочек «лайков»:

Источник: http://www.doklad-na-temu.ru/fizika/vozduh.htm

Как воздух проводит тепло? В каком случае воздух – хороший проводник, в каком – плохой?

Проводимость — это способность тела или материала пропускать тепло. При этом оно перемещается через твердый объект или из одного объекта в другой, потому что оба они находятся в контакте друг с другом. Это единственный способ прохождения тепла по всему телу. Возникает вопрос: «Как проводит тепло воздух и другие материалы?» Узнайте в статье!

Теплопроводность

Способность передавать тепло внутри объекта называется теплопроводностью. Это свойство обозначают буквой k, а измеряют в Вт/(м×K). Показатели теплопроводности варьируются для разных материалов. Так, золото, серебро и медь имеют высокую теплопроводность.

К слову, эти материалы также являются хорошими проводниками электричества. А как воздух проводит тепло? Ответ краток: он является плохим проводником.

Высокая проводимость золота, серебра и меди связана с тем, что электроны, которые отвечают за перенос заряда, также принимают участие в передаче тепловой энергии.

А вот такие материалы, как стекло и минеральная вата, имеют низкую теплопроводность. Объясняется это тем, что у них очень мало «свободных» электронов для переноса тепловой энергии внутри твердого тела. Материалы такого типа называют изоляторами.

Скорость теплопередачи (то есть скорость движения тепловой энергии) напрямую зависит от теплопроводности, разности температур и площади контакта и материала, которыми обладает тело.

По этой же причине нельзя утверждать, что воздух проводит тепло хорошо.

Если материал является хорошим проводником тепла, тогда оно быстро перемещается по телу. Металлы широко используются для целей теплопередачи, поскольку они обладают свойствами, которые позволяют распространять тепло, одновременно выдерживая экстремальные температуры, связанные с нагревом.

Именно электроны отвечают за передачу тепловой энергии, а также электрического заряда. Поэтому металлы являются хорошими проводниками тепла и электричества! Тут-то и скрывается ответ на вопрос: «Почему воздух плохо проводит тепло?»

Тем не менее не следует путать электрическую проводимость (которая связана с зарядом электронов), когда вы имеете в виду теплопроводность (которая связана с переносом энергии электронов).

Доказываем опытным путем

Попробуйте подержать один конец металлического стержня над пламенем – через несколько минут он нагреется.

Теперь подержите конец деревянной палочки в пламени, и этот конец станет настолько горячим, что он в конце концов вовсе загорится. Однако тот конец палочки, за который вы держитесь, останется относительно прохладным.

Тепло не распространяется по всему объему тела из-за его состава: его структура затрудняет передачу тепла электронами по материалу.

Так, повседневный опыт свидетельствует, что древесина не является хорошим проводником тепла.

Если вам когда-нибудь приходилось видеть срез дерева под микроскопом, то вы наверняка заметили особенности структуры древесины: она состоит из отдельных ячеек, которые действуют как изоляторы, потому что они не взаимосвязаны.

Читайте также  Как понизить влажность воздуха в бассейне

Клетки разбросаны, как камни в потоке. По такому материалу тепло двигается значительно медленнее, чем в металлах, где атомы связаны друг с другом в трехмерной «решетке».

Воздух плохо проводит тепло. Опыт повседневной жизни показывает: вспомните строение окон. Они всегда состоят из как минимум двух стекол, между которыми находится воздушная «подушка». Эта прослойка помогает сохранять тепло в помещении, не пропуская его наружу.

Итак, если тепловая энергия применяется непосредственно к одной части твердого объекта, электроны в объекте становятся возбужденными. Это приводит к колебаниям атомной решетки, которые проходят по объекту, повышая температуру при прохождении. Чем ближе звенья внутри твердого тела, тем быстрее происходит передача тепла.

Жидкости — плохие проводники тепла

Если вы закрепите кубик льда в нижней части пробирки с водой (вам нужно использовать вес, чтобы сделать это, иначе он будет плавать на поверхности, так как у льда меньшая плотность, чем у воды), а затем нагреете воду в верхней части трубки, вы обнаружите, что вода будет кипеть в верхней части трубки, а кубик льда останется замороженным.

Это связано с тем, что вода является плохим проводником тепла. Большая часть тепла будет двигаться в конвекционном токе внутри воды в верхней части пробирки, только небольшая часть ее будет опускаться до кубика льда.

Как воздух проводит тепло?

Воздух представляет собой набор газов.

Хотя он отлично подходит для конвекции, количество тепла, которое он может передать, минимально, потому что малая масса вещества не может хранить большое количество тепла — именно поэтому его не считают хорошим проводником.

Изоляционные свойства воздуха применяются человечеством в повседневной жизни. Так, они используются для изоляции кулеров, в стенах здания. Даже работа термоса построена на том, что воздух плохо проводит тепло. Примеров действительно множество!

Так чем же обусловлено это явление? Поскольку воздух неплотный, существует определенная масса, доступная для передачи тепловой энергии через проводимость. Поэтому он является плохим проводником, но отличным изолятором. Тем не менее ответ на вопрос: «Проводит ли воздух тепло?» — не столь однозначный. Так, рассмотрим следующие явления.

Радиация — это передача энергии через волны или возбужденные частицы. Воздух создает тепловой зазор, который не позволяет преодолеть тепловую энергию над ним.

Тепло должно излучаться от поверхности к воздушным частицам, затем оно должно излучаться из воздуха на противоположную поверхность.

Тепло очень медленно передвигается между тремя материалами, и большая часть передаваемой тепловой энергии поглощается в воздухе.

Конвекция представляет собой движение тепла через жидкость или газ из-за уменьшения плотности за счет поглощения тепла. В таком случае свойства воздуха становятся крайне полезными.

Он также двигается вверх, передавая тепло из изолированного контейнера или пространства. Поэтому конвекция используется для удаления тепла и может применяться для охлаждения поверхности.

Распределение тепла через конвекцию в воздухе несколько неэффективно, однако оно используется для многих целей охлаждения. Да, воздух плохо проводит тепло.

Примеры изоляции

Изоляция используется для многих целей. Некоторые из них включают охлаждение напитков и пищевых продуктов, создание воздушных зазоров в стенах, внедрение воздушных полостей в кухонные принадлежности. Особенности того, как воздух проводит тепло, применяются даже в изоляционной пене.

Вывод

Проводимость — это прохождение тепла через твердое тело. От явления конвекции ее отличает то, что в процессе не происходит никакого движения материи. Теперь нам известно, хорошо ли воздух проводит тепло, а также чем это обусловлено.

Источник: http://fb.ru/article/383028/kak-vozduh-provodit-teplo-v-kakom-sluchae-vozduh-horoshiy-provodnik-v-kakom-plohoy

Экспериментируем с магнитной левитацией: как повторить её дома

Магнитную левитацию и нулевое сопротивление — самые зрелищные свойства сверхпроводников — несложно продемонстрировать в домашних условиях.

Начало XX века в физике вполне можно назвать эпохой предельно низких температур. В 1908 году голландский физик Хейке Камерлинг-Оннес впервые получил жидкий гелий, имеющий температуру всего на 4,2° выше абсолютного нуля.

А вскоре ему удалось достичь температуры менее одного кельвина! За эти достижения в 1913 году Камерлинг-Оннес был удостоен Нобелевской премии. Но он вовсе не гнался за рекордами, его интересовало, как вещества меняют свои свойства при столь низких температурах, — в частности, он изучал изменение электрического сопротивления металлов.

И вот 8 апреля 1911 года произошло нечто невероятное: при температуре чуть ниже температуры кипения жидкого гелия электрическое сопротивление ртути внезапно исчезло.

Нет, оно не просто стало очень малым, оно оказалось равным нулю (насколько это было возможно измерить)! Ни одна из существовавших на тот момент теорий ничего подобного не предсказывала и объяснить не могла.

В следующем году подобное свойство было обнаружено у олова и свинца, причем последний проводил ток без сопротивления и при температурах даже чуть выше температуры кипения жидкого гелия. А к 1950−1960-м годам были открыты материалы NbTi и Nb3Sn, отличающиеся способностью сохранять сверхпроводящее состояние в мощных магнитных полях и при протекании больших токов. Увы, они все еще требуют охлаждения дорогим жидким гелием.

1. Установив «летающий вагон» с начинкой из сверхпроводника, с обкладками из пропитанной жидким азотом меламиновой губки и оболочкой из фольги на магнитный рельс через прокладку из пары деревянных линеек, заливаем в него жидкий азот, «вмораживая» магнитное поле в сверхпроводник.

>

1. Установив «летающий вагон» с начинкой из сверхпроводника, с обкладками из пропитанной жидким азотом меламиновой губки и оболочкой из фольги на магнитный рельс через прокладку из пары деревянных линеек, заливаем в него жидкий азот, «вмораживая» магнитное поле в сверхпроводник.

2. Дождавшись охлаждения сверхпроводника до температуры меньше -180°С, аккуратно вынимаем из-под него линейки. «Вагон» стабильно парит, даже если мы расположили его не совсем по центру рельса.

>

2. Дождавшись охлаждения сверхпроводника до температуры меньше -180°С, аккуратно вынимаем из-под него линейки. «Вагон» стабильно парит, даже если мы расположили его не совсем по центру рельса.

Следующее великое открытие в области сверхпроводимости произошло в 1986 году: Йоханнес Георг Беднорц и Карл Александр Мюллер обнаружили, что совместный оксид меди-бария-лантана обладает сверхпроводимостью при очень высокой (по сравнению с температурой кипения жидкого гелия) температуре — 35 К.

Уже в следующем году, заменив лантан на иттрий, удалось достичь сверхпроводимости при температуре 93 К. Конечно, по бытовым меркам это все еще довольно низкие температуры, -180°С, но главное, что они выше порога в 77 К — температуры кипения дешевого жидкого азота.

Кроме огромной по меркам обычных сверхпроводников критической температуры, для вещества YBa2Cu3O7-x (0 ≤ x ≤ 0,65) и ряда других купратов достижимы необычайно высокие значения критического магнитного поля и плотности тока.

Такое замечательное сочетание параметров не только позволило куда шире применять сверхпроводники в технике, но и сделало возможными множество интересных и зрелищных опытов, которые можно проделать даже в домашних условиях.

Нам не удалось зафиксировать никакого падения напряжения при пропускании через сверхпроводник тока более 5 А, что говорит о нулевом электрическом сопротивлении. Ну, по крайней мере, о сопротивлении меньше 20 мкОм — минимума, который можно зафиксировать нашим прибором.

Какой выбрать

Для начала нужно раздобыть подходящий сверхпроводник. Открыватели высокотемпературной сверхпроводимости запекали смесь оксидов в специальной печи, но для простых опытов мы рекомендуем купить готовые сверхпроводники. Они выпускаются в виде поликристаллической керамики, текстурированной керамики, сверхпроводящих лент первого и второго поколения.

Поликристаллическая керамика стоит недорого, но и параметры у нее далеки от рекордных: уже небольшие магнитные поля и токи могут разрушить сверхпроводимость. Ленты первого поколения тоже не поражают своими параметрами. Совсем другое дело — текстурированная керамика, она имеет наилучшие характеристики.

Но для развлекательных опытов она неудобна, хрупка, деградирует со временем, и самое главное — найти ее в свободной продаже довольно сложно. А вот ленты второго поколения оказались идеальным вариантом для максимального числа наглядных опытов. Этот высокотехнологичный продукт умеют производить всего четыре компании в мире, в том числе российская «СуперОкс».

И, что весьма важно, свои ленты, сделанные на основе GdBa2Cu3O7-x, они готовы продавать в количестве от одного метра, чего как раз хватает для проведения наглядных научных экспериментов.

Сверхпроводящая лента второго поколения имеет сложную структуру из множества слоев различного назначения. Толщина некоторых слоев измеряется нанометрами, так что это самые настоящие нанотехнологии.

Равно нулю

Наш первый опыт — измерение сопротивления сверхпроводника. Действительно ли оно нулевое? Измерять его обычным омметром бессмысленно: он покажет нуль и при подключении к медному проводу.

Столь малые сопротивления измеряются иначе: через проводник пропускают большой ток и измеряют падения напряжения на нем. В качестве источника тока мы взяли обычную щелочную батарейку, которая при коротком замыкании дает около 5 А.

При комнатной температуре как метр сверхпроводящей ленты, так и метр медного провода показывают сопротивление в несколько сотых ома. Охлаждаем проводники жидким азотом и сразу наблюдаем интересный эффект: еще до того как мы пустили ток, вольтметр уже показал примерно 1 мВ.

По всей видимости, это термо-ЭДС, поскольку в нашей схеме много различных металлов (медь, припой, стальные «крокодильчики») и перепады температуры в сотни градусов (вычтем это напряжение при дальнейших измерениях).

Тонкий дисковый магнит прекрасно подходит для создания левитирующей платформы над сверхпроводником. В случае сверхпроводника-снежинки он легко «вдавливается» в горизонтальном положении, а в случае сверхпроводника-квадрата его стоит «вмораживать».

А теперь пропускаем ток через охлажденную медь: тот же провод показывает сопротивление уже всего в тысячные доли ома. А что же со сверхпроводящей лентой? Подключаем батарейку, стрелка амперметра мигом устремляется к противоположному краю шкалы, а вот вольтметр своих показаний не меняет даже на десятую милливольта. Сопротивление ленты в жидком азоте в точности равно нулю.

В качестве кюветы для сверхпроводящей сборки в форме снежинки отлично подошла крышка от пятилитровой бутыли с водой. В качестве теплоизоляционной подставки под крышку стоит использовать кусок меламиновой губки. Доливать азот приходится не чаще одного раза в десять минут.

Летательные аппараты

Теперь перейдем к взаимодействию сверхпроводника и магнитного поля. Малые поля из сверхпроводника вообще выталкиваются, а более сильные проникают в него не сплошным потоком, а в виде отдельных «струй». Кроме того, если мы двигаем магнит возле сверхпроводника, то в последнем наводятся токи, и их поле стремится вернуть магнит назад.

Все это делает возможной сверхпроводящую или, как ее еще называют, квантовую левитацию: магнит или сверхпроводник могут висеть в воздухе, стабильно удерживаемые магнитным полем. Чтобы убедиться в этом, достаточно маленького редкоземельного магнитика и кусочка сверхпроводящей ленты.

Если же иметь хотя бы метр ленты и неодимовые магниты покрупнее (мы использовали диск 40 x 5 мм и цилиндр 25 x 25 мм), то можно сделать эту левитацию весьма зрелищной, подняв в воздух дополнительный груз.

Источник: https://www.PopMech.ru/diy/52608-eksperimentiruem-s-magnitnoy-levitatsiey-kak-povtorit-eye-doma/

3 способа получить электричество из земли своими руками

Электричество есть везде, взять его, вот наша задача. Наука до конца не определилась с этим понятием, однако это не мешает учёным и практикам извлекать энергию из различных компонентов среды и трансформировать её в другие виды энергий, получая блага в виде тепла и света. Я уже писал как выбрать аккумулятор для дома, сегодня расскажу о способах получить электричество из земли своими руками.

Читайте также  Очиститель увлажнитель воздуха для дома какой лучше

Почему электричество добывают из земли

Для того, чтобы получить электричество, нужно найти разность потенциалов и проводник. Соединив всё в единый поток, можно обеспечить себе постоянный источник электроэнергии.

Однако в действительности приручить разность потенциалов не так-то просто.

Природа проводит через жидкую среду электроэнергию огромной силы. Это разряды молнии, которые, как известно, возникают в воздухе, насыщенном влагой. Однако это всего лишь единичные разряды, а не постоянный поток электроэнергии.

Человек взял на себя функцию природной мощи и организовал перемещение электроэнергии по проводам. Однако это всего лишь перевод одного вида энергии в другой. Извлечение электричества непосредственно из среды остаётся преимущественно на уровне научных поисков, опытов из разряда занимательной физики и создания небольших установок малой мощности.

Проще всего извлекать электричество из твёрдой и влажной среды.

Единство трёх сред

Самой популярной средой в этом случае является почва. Дело в том, что земля – это единство трёх сред: твёрдой, жидкой и газообразной. Меду мелкими частичками минералов расположены капли воды и пузырьки воздуха. Более того, элементарная единица почвы – мицелла или глинисто-гумусовый комплекс представляет собой сложную систему, обладающую разницей потенциалов.

На внешней оболочке такой системы формируется отрицательный заряд, на внутренней – положительный. К отрицательно заряженной оболочке мицеллы притягиваются положительно заряженные ионы, находящиеся в среде. Так что в почве постоянно происходят электрические и электрохимические процессы.

В более гомогенной воздушной и водной среде таких условий для концентрации электричества нет.

3 способа добыть электроэнергию земли своими руками

Поскольку в почве есть и электричество, и электролиты, то её можно рассматривать не только как среду для живых организмов и источник урожая, но и как мини электростанцию. Кроме того, наши электрифицированные жилища концентрируют в среде вокруг себя и то электричество, которое «стекает» чрез заземление. Этим нельзя не воспользоваться. 

Чаще всего домовладельцы применяют три способа извлечения электроэнергии из грунта своими руками, расположенного вокруг дома.

1. Нулевой провод – нагрузка – почва

Напряжение в жилые помещения подается через 2 проводника: фазный и нулевой. При создании третьего, заземлённого, проводника между ним и нулевым контактом возникает напряжение от 10 до 20 В.

Этого напряжения достаточно для того, чтобы зажечь пару лампочек.

Таким образом, для подключения потребителей электроэнергии к «земляному» электричеству достаточно создать схему: нулевой провод – нагрузка – почва. Умельцы эту примитивную схему могут усовершенствовать и получить ток большего напряжения.

2. Цинковый и медный электрод

Следующий способ получения электричества основан на использовании только земли. Берутся два металлических стрежня – один цинковый, другой медный, и помещаются в грунт. Лучше, если это будет грунт в изолированном пространстве.

Изоляция необходима для того, чтобы создать среду с повышенной солёностью, что несовместимо с жизнью – в таком грунте ничего расти не будет. Стержни создадут разницу потенциалов, а грунт станет электролитом.

В самом простом варианте получим напряжение в 3 В. Этого, конечно мало для дома, но систему можно усложнить, увеличив тем самым мощность.

3.  Потенциал между крышей и землёй

3. Достаточно большую разность потенциалов можно создать между крышей дома и землёй. Если на крыше поверхность металлическая, а в земле – ферритовая, то можно добиться разницы потенциалов в 3 В. Увеличить этот показатель можно за счёт изменения размеров пластин, а также расстояния между ними.

Изучая данный вопрос я понял, что современная промышленность не выпускает готовых устройства для получения электричества из земли, но это можно сделать и из подручного материала.

Однако следует учесть, что эксперименты с электричеством опасны. Лучше если вы все же привлечёте специалиста, хотя бы на заключительной стадии оценки уровня безопасности системы.

Источник: https://otlad.ru/svet/kak-poluchit-elektrichestvo-iz-zemli/

Интернет-урок по окружающему миру «Воздух. Свойства воздуха» | Класс39

На нашем интернет-уроке по окружающему миру мы поговорим о том, без чего бы не существовали мы, природа, планета Земля. Да! Это воздух. Что такое воздух?…

Воздух и свойства воздуха

Воздух — это смесь газов: азота, кислорода, углекислого газа и других.

Газы не имеют формы. Они распространяются во все стороны и заполняют весь доступный объём.

Воздушная оболочка Земли — атмосфера — защищает нас от губительных космических лучей, от перегрева теплом, исходящим от Солнца, от переохлаждения.

Слои атмосферы:

 Воздух необходим всему живому для дыхания и для создания органических веществ.
Смотрим познавательный видеоролик с 5.55

Какие свойства имеет воздух?

О свойствах поподробнее.

Сейчас вы видите все то, что вокруг вас: стены, компьютер, шкаф, за окном – дома, деревья, облака. А можем ли мы видеть воздух? Верите мне, что воздух находится вокруг нас повсюду? Есть ли он вообще? Может, его придумали? Докажем это?  

Исследование 1

Возьмите соломинку и опустите ее в стакан с водой. Слегка подуйте в соломинку. Что появилось? Появятся пузырьки воздуха.

Вывод: При помощи зрения воздух всё же можно обнаружить в некоторых случаях.       

Посмотрите на комнатные растения. Какого они цвета? А ваши стены? А как вы думаете, какого цвета воздух?
Открываем первое свойство воздуха: воздух невидимый и бесцветный.

Исследование 2.  А сейчас вдохните глубоко, что вы почувствовали?… Пахнет чем-нибудь воздух? А как же запахи в кондитерской, аптеке? … Запах, мы ощущаем, когда частицы вещества попадают к нам в нос.

Вывод: Чистый воздух запаха не имеет.

Исследование 3. Можно ли попробовать воздух на вкус? Лизните его. Какое свойства воздуха мы откроем?

Вывод: воздух не имеет вкуса

Исследование 4. Возьмите в руки книгу. Какой она формы? А теперь попробуйте взять в руки воздух. Получилось? Имеет ли воздух форму?

Вывод: воздух не имеет форму. 

Исследование 5. Воздух упругий 

Возьмите мяч, сожмите его руками. Ударьте мячом об пол. Что наблюдаете? Какое свойство воздуха обнаружилось?

Теперь посмотрите на эти два шарика. Какой из них более упругий? Почему?

Могу ли я сделать первый шарик таким же упругим, как и второй? Что для этого нужно сделать?…. Верно, добавить воздуха. А что происходит с шариком, когда мы добавляем воздух?…… (Воздух сжимается).

У вас, наверняка, есть велосипед. Какое свойство воздуха используется при накачивании насосом камеры колеса велосипеда? …..  также прыжки на спортивных велосипедов делают как раз из-за воздуха в шинах.

А где еще используется это свойство?…..

Исследование 6. Воздух легче воды, то есть менее плотный, чем вода.

Наберите в чашку воды. Попробуйте утопить в ней теннисный шарик. Что наблюдаете? Какое свойство воздуха обнаружили?

Вот почему вы не боитесь плавать, надев спасательный круг. 

Исследование 7. Воздух — плохо проводит тепло. 

Почему в домах в окна вставляют двойные рамы? Что находится между рамами? Какое свойство воздуха здесь проявляется?

Верно, между этими двойными стеклами находится воздух, который не пропускает холод и дома становится гораздо теплее. Так как воздух имеет низкую плотность, он плохо проводит тепло.

Если воздух плохо проводит тепло, почему земля под снегом остается теплой, и корни растений не замерзают?  Что же греет землю, снег ли?….

Между снежинками — воздух, он не пропускает холод.

Подумайте, как сидят птички, когда на улице мороз? Почему?…. А что происходит с мехом животных к зиме?…

Мех животных, перья птиц сами по себе не греют, а греет воздух, находящийся между ними. Когда холодно, звери поднимают шерсть, птицы хохлятся, а человек надевает тёплый свитер, шубу.

Исследование 8. При нагревании расширяется

 Почему люди в бане поднимаются на полок, ближе к потолку, чтобы попариться? Почему батареи в комнатах устанавливают внизу, под окном? Что происходит с горячим воздухом?

Да, когда воздух нагревается, воздух расширяется, то есть становится легче и поднимается вверх.

Теперь вы сможете объяснить по какому принципу летает воздушный шар?

А китайские фонарики?

А может ли быть одинаковая температура: днем и ночью? зимой и летом? у полюсов и на экваторе?

Что происходит с нагревшимся воздухом? (Поднимается). Что занимает освободившееся место? (Холодный воздух).

А это значит, на Земле происходит постоянное перемещение воздуха, а попросту дует ветер.

Ветер — это движение воздуха.

Ветра приносят и пользу и вред.

Представьте на минуту, что на Земле нет ветра. Нет ветра в нашем промышленно развитом городе, где есть заводы, фабрики, шахты, разрезы, взрывы. Что произойдет?

Трубы от заводов и фабрик выбрасывают дым высоко в небо. Там на высоте дуют мощные ветры. Они подхватывают клубы дыма и рвут их в клочья, развеивают, смешивают с чистым воздухом, быстро снижают опасность ядовитых газов. Высокие трубы отводят беду от живущих поблизости людей. 

Есть ветра, которые приносят много бед.

Ураганытайфуны

циклоны

Смерчи
(торнадо)

— Все это бури, скорость ветра которых достигает 120 км/ч. Такие ветры способны снести здания. Обычно сопровождаются ливнями. — Этовращающиеся воронки со скоростью ветра до 5000 км/ч. Воронка засасывает все на своем пути (случай с розовыми лягушками).

Как использует человек свойства воды

Человек издавна научился использовать силу воздуха, как источник энергии.
Он изобрел парус, который позволил ему отправиться в путешествие.

Уже 2-3 тысячи лет назад египтяне плавали по Средиземному морю на вполне совершенных парусных судах.

В Средние века строились ветряные колеса для работы по хозяйству.

Источник: http://www.klass39.ru/internet-urok-po-okruzhayushhemu-miru-vozdux-svojstva-vozduxa/

Понравилась статья? Поделить с друзьями: